2,317 research outputs found

    Decentralized Erasure Codes for Distributed Networked Storage

    Full text link
    We consider the problem of constructing an erasure code for storage over a network when the data sources are distributed. Specifically, we assume that there are n storage nodes with limited memory and k<n sources generating the data. We want a data collector, who can appear anywhere in the network, to query any k storage nodes and be able to retrieve the data. We introduce Decentralized Erasure Codes, which are linear codes with a specific randomized structure inspired by network coding on random bipartite graphs. We show that decentralized erasure codes are optimally sparse, and lead to reduced communication, storage and computation cost over random linear coding.Comment: to appear in IEEE Transactions on Information Theory, Special Issue: Networking and Information Theor

    A New Low Complexity Uniform Filter Bank Based on the Improved Coefficient Decimation Method

    Get PDF
    In this paper, we propose a new uniform filter bank (FB) based on the improved coefficient decimation method (ICDM). In the proposed FB’s design, the ICDM is used to obtain different multi-band frequency responses using a single lowpass prototype filter. The desired subbands are individually obtained from these multi-band frequency responses by using low order frequency response masking filters and their corresponding ICDM output frequency responses. We show that the proposed FB is a very low complexity alternative to the other FBs in literature, especially the widely used discrete Fourier transform based FB (DFTFB) and the CDM based FB (CDFB). The proposed FB can have a higher number of subbands with twice the center frequency resolution when compared with the CDFB and DFTFB. Design example and implementation results show that our FB achieves 86.59% and 58.84% reductions in resource utilizations and 76.95% and 47.09% reductions in power consumptions when compared with the DFTFB and CDFB respectively

    Jet engine nozzle exit configurations and associated systems and methods

    Get PDF
    Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter

    Jet Engine Nozzle Exit Configurations and Associated Systems and Methods

    Get PDF
    Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter

    Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells

    Get PDF
    This paper presents a new computational framework for modeling chemically reacting flow in anode-supported solid-oxide fuel cells (SOFC). Depending on materials and operating conditions, SOFC anodes afford a possibility for internal reforming or catalytic partial oxidation of hydrocarbon fuels. An important new element of the model is the capability to represent elementary heterogeneous chemical kinetics in the form of multistep reaction mechanisms. Porous-media transport in the electrodes is represented with a dusty-gas model. Charge-transfer chemistry is represented in a modified Butler-Volmer setting that is derived from elementary reactions, but assuming a single rate-limiting step. The model is discussed in terms of systems with defined flow channels and planar membrane-electrode assemblies. However, the underlying theory is independent of the particular geometry. Examples are given to illustrate the model
    • …
    corecore